Tap the blue circles to see an explanation.
$$ \begin{aligned}(2x^2-6x+3)(2x+1)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}4x^3+2x^2-12x^2-6x+6x+3 \xlongequal{ } \\[1 em] & \xlongequal{ }4x^3+2x^2-12x^2 -\cancel{6x}+ \cancel{6x}+3 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}4x^3-10x^2+3\end{aligned} $$ | |
① | Multiply each term of $ \left( \color{blue}{2x^2-6x+3}\right) $ by each term in $ \left( 2x+1\right) $. $$ \left( \color{blue}{2x^2-6x+3}\right) \cdot \left( 2x+1\right) = 4x^3+2x^2-12x^2 -\cancel{6x}+ \cancel{6x}+3 $$ |
② | Combine like terms: $$ 4x^3+ \color{blue}{2x^2} \color{blue}{-12x^2} \, \color{red}{ -\cancel{6x}} \,+ \, \color{red}{ \cancel{6x}} \,+3 = 4x^3 \color{blue}{-10x^2} +3 $$ |