Tap the blue circles to see an explanation.
$$ \begin{aligned}(2w+b-4)^2& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}b^2+4bw+4w^2-8b-16w+16\end{aligned} $$ | |
① | Multiply each term of $ \left( \color{blue}{2w+b-4}\right) $ by each term in $ \left( 2w+b-4\right) $. $$ \left( \color{blue}{2w+b-4}\right) \cdot \left( 2w+b-4\right) = 4w^2+2bw-8w+2bw+b^2-4b-8w-4b+16 $$ |
② | Combine like terms: $$ 4w^2+ \color{blue}{2bw} \color{red}{-8w} + \color{blue}{2bw} +b^2 \color{green}{-4b} \color{red}{-8w} \color{green}{-4b} +16 = b^2+ \color{blue}{4bw} +4w^2 \color{green}{-8b} \color{red}{-16w} +16 $$ |