$$ \begin{aligned}(2t+4)^3& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}8t^3+48t^2+96t+64\end{aligned} $$ | |
① | Find $ \left(2t+4\right)^3 $ using formula $$ (A + B) = A^3 + 3A^2B + 3AB^2 + B^3 $$where $ A = 2t $ and $ B = 4 $. $$ \left(2t+4\right)^3 = \left( 2t \right)^3+3 \cdot \left( 2t \right)^2 \cdot 4 + 3 \cdot 2t \cdot 4^2+4^3 = 8t^3+48t^2+96t+64 $$ |