Tap the blue circles to see an explanation.
$$ \begin{aligned}(2r+3t)(r-t)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}2r^2-2rt+3rt-3t^2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}2r^2+rt-3t^2\end{aligned} $$ | |
① | Multiply each term of $ \left( \color{blue}{2r+3t}\right) $ by each term in $ \left( r-t\right) $. $$ \left( \color{blue}{2r+3t}\right) \cdot \left( r-t\right) = 2r^2-2rt+3rt-3t^2 $$ |
② | Combine like terms: $$ 2r^2 \color{blue}{-2rt} + \color{blue}{3rt} -3t^2 = 2r^2+ \color{blue}{rt} -3t^2 $$ |