Tap the blue circles to see an explanation.
$$ \begin{aligned}(2p-1)(p\cdot2+2p-7)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}(2p-1)(4p-7) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}8p^2-14p-4p+7 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}8p^2-18p+7\end{aligned} $$ | |
① | Combine like terms: $$ \color{blue}{2p} + \color{blue}{2p} -7 = \color{blue}{4p} -7 $$ |
② | Multiply each term of $ \left( \color{blue}{2p-1}\right) $ by each term in $ \left( 4p-7\right) $. $$ \left( \color{blue}{2p-1}\right) \cdot \left( 4p-7\right) = 8p^2-14p-4p+7 $$ |
③ | Combine like terms: $$ 8p^2 \color{blue}{-14p} \color{blue}{-4p} +7 = 8p^2 \color{blue}{-18p} +7 $$ |