Tap the blue circles to see an explanation.
$$ \begin{aligned}(2h+3)(2h^2+3h+4)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}4h^3+6h^2+8h+6h^2+9h+12 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}4h^3+12h^2+17h+12\end{aligned} $$ | |
① | Multiply each term of $ \left( \color{blue}{2h+3}\right) $ by each term in $ \left( 2h^2+3h+4\right) $. $$ \left( \color{blue}{2h+3}\right) \cdot \left( 2h^2+3h+4\right) = 4h^3+6h^2+8h+6h^2+9h+12 $$ |
② | Combine like terms: $$ 4h^3+ \color{blue}{6h^2} + \color{red}{8h} + \color{blue}{6h^2} + \color{red}{9h} +12 = 4h^3+ \color{blue}{12h^2} + \color{red}{17h} +12 $$ |