Tap the blue circles to see an explanation.
$$ \begin{aligned}(2a+3)(a^2+2a-4)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}2a^3+4a^2-8a+3a^2+6a-12 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}2a^3+7a^2-2a-12\end{aligned} $$ | |
① | Multiply each term of $ \left( \color{blue}{2a+3}\right) $ by each term in $ \left( a^2+2a-4\right) $. $$ \left( \color{blue}{2a+3}\right) \cdot \left( a^2+2a-4\right) = 2a^3+4a^2-8a+3a^2+6a-12 $$ |
② | Combine like terms: $$ 2a^3+ \color{blue}{4a^2} \color{red}{-8a} + \color{blue}{3a^2} + \color{red}{6a} -12 = 2a^3+ \color{blue}{7a^2} \color{red}{-2a} -12 $$ |