Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{1+sinx}{c}osx& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{inosx+o}{c}sx \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{inos^2x+os}{c}x \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{inos^2x^2+osx}{c}\end{aligned} $$ | |
① | Step 1: Write $ o $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{1+insx}{c} \cdot o & \xlongequal{\text{Step 1}} \frac{1+insx}{c} \cdot \frac{o}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ \left( 1+insx \right) \cdot o }{ c \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ o+inosx }{ c } = \frac{inosx+o}{c} \end{aligned} $$ |
② | Step 1: Write $ s $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{inosx+o}{c} \cdot s & \xlongequal{\text{Step 1}} \frac{inosx+o}{c} \cdot \frac{s}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ \left( inosx+o \right) \cdot s }{ c \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ inos^2x+os }{ c } \end{aligned} $$ |
③ | Step 1: Write $ x $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{inos^2x+os}{c} \cdot x & \xlongequal{\text{Step 1}} \frac{inos^2x+os}{c} \cdot \frac{x}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ \left( inos^2x+os \right) \cdot x }{ c \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ inos^2x^2+osx }{ c } \end{aligned} $$ |