Tap the blue circles to see an explanation.
$$ \begin{aligned}(17-2x)\cdot(11-2x)x& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}(187-34x-22x+4x^2)x \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}(4x^2-56x+187)x \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}4x^3-56x^2+187x\end{aligned} $$ | |
① | Multiply each term of $ \left( \color{blue}{17-2x}\right) $ by each term in $ \left( 11-2x\right) $. $$ \left( \color{blue}{17-2x}\right) \cdot \left( 11-2x\right) = 187-34x-22x+4x^2 $$ |
② | Combine like terms: $$ 187 \color{blue}{-34x} \color{blue}{-22x} +4x^2 = 4x^2 \color{blue}{-56x} +187 $$ |
③ | $$ \left( \color{blue}{4x^2-56x+187}\right) \cdot x = 4x^3-56x^2+187x $$ |