Tap the blue circles to see an explanation.
$$ \begin{aligned}(16+x)\cdot(12+2x)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}192+32x+12x+2x^2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}2x^2+44x+192\end{aligned} $$ | |
① | Multiply each term of $ \left( \color{blue}{16+x}\right) $ by each term in $ \left( 12+2x\right) $. $$ \left( \color{blue}{16+x}\right) \cdot \left( 12+2x\right) = 192+32x+12x+2x^2 $$ |
② | Combine like terms: $$ 192+ \color{blue}{32x} + \color{blue}{12x} +2x^2 = 2x^2+ \color{blue}{44x} +192 $$ |