Tap the blue circles to see an explanation.
$$ \begin{aligned}(10-y^2)^2& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}100-20y^2+y^4 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}y^4-20y^2+100\end{aligned} $$ | |
① | Find $ \left(10-y^2\right)^2 $ using formula. $$ (A - B)^2 = \color{blue}{A^2} - 2 \cdot A \cdot B + \color{red}{B^2} $$where $ A = \color{blue}{ 10 } $ and $ B = \color{red}{ y^2 }$. $$ \begin{aligned}\left(10-y^2\right)^2 = \color{blue}{10^2} -2 \cdot 10 \cdot y^2 + \color{red}{\left( y^2 \right)^2} = 100-20y^2+y^4\end{aligned} $$ |
② | Combine like terms: $$ y^4-20y^2+100 = y^4-20y^2+100 $$ |