Tap the blue circles to see an explanation.
$$ \begin{aligned}(1-x)(1-0.4x-0.6x^2)& \xlongequal{ }(1-x)(1-0x-0x^2) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}1+0x+0x^2-x+0x^2+0x^3 \xlongequal{ } \\[1 em] & \xlongequal{ }10x \cancel{0x^2}-x \cancel{0x^2}0x^3 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}-x+1\end{aligned} $$ | |
① | Multiply each term of $ \left( \color{blue}{1-x}\right) $ by each term in $ \left( 10x0x^2\right) $. $$ \left( \color{blue}{1-x}\right) \cdot \left( 10x0x^2\right) = 10x \cancel{0x^2}-x \cancel{0x^2}0x^3 $$ |
② | Combine like terms: $$ 1 \color{blue}{0x} \, \color{red}{ \cancel{0x^2}} \, \color{blue}{-x} \, \color{red}{ \cancel{0x^2}} \,0x^3 = \color{blue}{-x} +1 $$ |