Tap the blue circles to see an explanation.
$$ \begin{aligned}(1-p)^3& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}1-3p+3p^2-p^3 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}-p^3+3p^2-3p+1\end{aligned} $$ | |
① | Find $ \left(1-p\right)^3 $ using formula $$ (A - B) = A^3 - 3A^2B + 3AB^2 - B^3 $$where $ A = 1 $ and $ B = p $. $$ \left(1-p\right)^3 = 1^3-3 \cdot 1^2 \cdot p + 3 \cdot 1 \cdot p^2-p^3 = 1-3p+3p^2-p^3 $$ |
② | Combine like terms: $$ -p^3+3p^2-3p+1 = -p^3+3p^2-3p+1 $$ |