Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{1}{4}x^2-3x+2.25+0.75x^2+2x-\frac{1}{4}& \xlongequal{ }\frac{1}{4}x^2-3x+2.25+0x^2+2x-\frac{1}{4} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{x^2}{4}-3x+2.25+\frac{8x-1}{4} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}\frac{x^2-12x}{4}+2.25+\frac{8x-1}{4} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} \htmlClass{explanationCircle explanationCircle6}{\textcircled {6}} } }}}\frac{x^2-12x+8}{4}+\frac{8x-1}{4} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle7}{\textcircled {7}} } }}}\frac{x^2-4x+7}{4}\end{aligned} $$ | |
① | Step 1: Write $ x^2 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{1}{4} \cdot x^2 & \xlongequal{\text{Step 1}} \frac{1}{4} \cdot \frac{x^2}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 1 \cdot x^2 }{ 4 \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ x^2 }{ 4 } \end{aligned} $$ |
② | Step 1: Write $ 0x^2+2x $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract raitonal expressions, both fractions must have the same denominator. |
③ | Step 1: Write $ 3x $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract raitonal expressions, both fractions must have the same denominator. |
④ | Step 1: Write $ 0x^2+2x $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract raitonal expressions, both fractions must have the same denominator. |
⑤ | Step 1: Write $ 2 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add raitonal expressions, both fractions must have the same denominator. |
⑥ | Step 1: Write $ 0x^2+2x $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract raitonal expressions, both fractions must have the same denominator. |
⑦ | To add expressions with the same denominators, we add the numerators and write the result over the common denominator. $$ \begin{aligned} \frac{x^2-12x+8}{4} + \frac{8x-1}{4} & = \frac{x^2-12x+8}{\color{blue}{4}} + \frac{8x-1}{\color{blue}{4}} = \\[1ex] &=\frac{ x^2-12x+8 + \left( 8x-1 \right) }{ \color{blue}{ 4 }}= \frac{x^2-4x+7}{4} \end{aligned} $$ |