Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{1}{2}ab-4bc+0.25ac-(ac-2bc+\frac{3}{2}ab)+3bc+2ac& \xlongequal{ }\frac{1}{2}ab-4bc+0ac-(ac-2bc+\frac{3}{2}ab)+3bc+2ac \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{a}{2}b-4bc+0ac-(ac-2bc+\frac{3a}{2}b)+3bc+2ac \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}\frac{ab}{2}-4bc+0ac-(ac-2bc+\frac{3ab}{2})+3bc+2ac \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} \htmlClass{explanationCircle explanationCircle6}{\textcircled {6}} } }}}\frac{ab-8bc}{2}+0ac-\frac{3ab+2ac-4bc}{2}+3bc+2ac \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle7}{\textcircled {7}} \htmlClass{explanationCircle explanationCircle8}{\textcircled {8}} } }}}\frac{ab-8bc}{2}-\frac{3ab+2ac-4bc}{2}+3bc+2ac \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle9}{\textcircled {9}} } }}}\frac{-2ab-2ac-4bc}{2}+3bc+2ac \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle10}{\textcircled {10}} } }}}\frac{-2ab+2ac+2bc}{2}\end{aligned} $$ | |
① | Step 1: Write $ a $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{1}{2} \cdot a & \xlongequal{\text{Step 1}} \frac{1}{2} \cdot \frac{a}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 1 \cdot a }{ 2 \cdot 1 } \xlongequal{\text{Step 3}} \frac{ a }{ 2 } \end{aligned} $$ |
② | Step 1: Write $ a $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{3}{2} \cdot a & \xlongequal{\text{Step 1}} \frac{3}{2} \cdot \frac{a}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 3 \cdot a }{ 2 \cdot 1 } \xlongequal{\text{Step 3}} \frac{ 3a }{ 2 } \end{aligned} $$ |
③ | Step 1: Write $ b $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{a}{2} \cdot b & \xlongequal{\text{Step 1}} \frac{a}{2} \cdot \frac{b}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ a \cdot b }{ 2 \cdot 1 } \xlongequal{\text{Step 3}} \frac{ ab }{ 2 } \end{aligned} $$ |
④ | Step 1: Write $ b $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{3a}{2} \cdot b & \xlongequal{\text{Step 1}} \frac{3a}{2} \cdot \frac{b}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 3a \cdot b }{ 2 \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 3ab }{ 2 } \end{aligned} $$ |
⑤ | Step 1: Write $ 4bc $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract raitonal expressions, both fractions must have the same denominator. |
⑥ | Step 1: Write $ ac-2bc $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add raitonal expressions, both fractions must have the same denominator. |
⑦ | Step 1: Write $ 0ac $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add raitonal expressions, both fractions must have the same denominator. |
⑧ | Step 1: Write $ ac-2bc $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add raitonal expressions, both fractions must have the same denominator. |
⑨ | To subtract expressions with the same denominators, we subtract the numerators and write the result over the common denominator. $$ \begin{aligned} \frac{ab-8bc}{2} - \frac{3ab+2ac-4bc}{2} & = \frac{ab-8bc}{\color{blue}{2}} - \frac{3ab+2ac-4bc}{\color{blue}{2}} = \\[1ex] &=\frac{ ab-8bc - \left( 3ab+2ac-4bc \right) }{ \color{blue}{ 2 }}= \frac{-2ab-2ac-4bc}{2} \end{aligned} $$ |
⑩ | Step 1: Write $ 3bc+2ac $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add raitonal expressions, both fractions must have the same denominator. |