Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{\frac{1}{x+1}-1}{x}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{-\frac{x}{x+1}}{x} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}-\frac{x}{x^2+x}\end{aligned} $$ | |
① | Step 1: Write $ 1 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract raitonal expressions, both fractions must have the same denominator. |
② | Step 1: To divide rational expressions, multiply the first fraction by the reciprocal of the second fraction. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{ \frac{-x}{x+1} }{x} & \xlongequal{\text{Step 1}} \frac{-x}{x+1} \cdot \frac{\color{blue}{1}}{\color{blue}{x}} \xlongequal{\text{Step 2}} \frac{ \left( -x \right) \cdot 1 }{ \left( x+1 \right) \cdot x } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ -x }{ x^2+x } \end{aligned} $$ |