$$ \begin{aligned}(-x-y)^2& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}x^2+2xy+y^2\end{aligned} $$ | |
① | Find $ \left(-x-y\right)^2 $ in two steps. S1: Change all signs inside bracket. S2: Apply formula $$ (A + B)^2 = \color{blue}{A^2} + 2 \cdot A \cdot B + \color{red}{B^2} $$where $ A = \color{blue}{ x } $ and $ B = \color{red}{ y }$. $$ \begin{aligned}\left(-x-y\right)^2& \xlongequal{ S1 } \left(x+y\right)^2 \xlongequal{ S2 } \color{blue}{x^2} +2 \cdot x \cdot y + \color{red}{y^2} = \\[1 em] & = x^2+2xy+y^2\end{aligned} $$ |