$$ \begin{aligned}(-a-b)^2& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}a^2+2ab+b^2\end{aligned} $$ | |
① | Find $ \left(-a-b\right)^2 $ in two steps. S1: Change all signs inside bracket. S2: Apply formula $$ (A + B)^2 = \color{blue}{A^2} + 2 \cdot A \cdot B + \color{red}{B^2} $$where $ A = \color{blue}{ a } $ and $ B = \color{red}{ b }$. $$ \begin{aligned}\left(-a-b\right)^2& \xlongequal{ S1 } \left(a+b\right)^2 \xlongequal{ S2 } \color{blue}{a^2} +2 \cdot a \cdot b + \color{red}{b^2} = \\[1 em] & = a^2+2ab+b^2\end{aligned} $$ |