Tap the blue circles to see an explanation.
$$ \begin{aligned}-6x\cdot2+10x-8-(3x\cdot2-7x-19)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}-12x+10x-8-(6x-7x-19) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}-2x-8-(-x-19) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}-2x-8+x+19 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}-x+11\end{aligned} $$ | |
① | $$ 6 x \cdot 2 = 12 x $$$$ 3 x \cdot 2 = 6 x $$ |
② | Combine like terms: $$ \color{blue}{-12x} + \color{blue}{10x} -8 = \color{blue}{-2x} -8 $$Combine like terms: $$ \color{blue}{6x} \color{blue}{-7x} -19 = \color{blue}{-x} -19 $$ |
③ | Remove the parentheses by changing the sign of each term within them. $$ - \left( -x-19 \right) = x+19 $$ |
④ | Combine like terms: $$ \color{blue}{-2x} \color{red}{-8} + \color{blue}{x} + \color{red}{19} = \color{blue}{-x} + \color{red}{11} $$ |