Tap the blue circles to see an explanation.
$$ \begin{aligned}(-5+3n-x)(3n-x)+5& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}-15n+5x+9n^2-3nx-3nx+x^2+5 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}9n^2-6nx+x^2-15n+5x+5\end{aligned} $$ | |
① | Multiply each term of $ \left( \color{blue}{-5+3n-x}\right) $ by each term in $ \left( 3n-x\right) $. $$ \left( \color{blue}{-5+3n-x}\right) \cdot \left( 3n-x\right) = -15n+5x+9n^2-3nx-3nx+x^2 $$ |
② | Combine like terms: $$ -15n+5x+9n^2 \color{blue}{-3nx} \color{blue}{-3nx} +x^2+5 = 9n^2 \color{blue}{-6nx} +x^2-15n+5x+5 $$ |