$$ \begin{aligned}(-4m-3n)^2& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}16m^2+24mn+9n^2\end{aligned} $$ | |
① | Find $ \left(-4m-3n\right)^2 $ in two steps. S1: Change all signs inside bracket. S2: Apply formula $$ (A + B)^2 = \color{blue}{A^2} + 2 \cdot A \cdot B + \color{red}{B^2} $$where $ A = \color{blue}{ 4m } $ and $ B = \color{red}{ 3n }$. $$ \begin{aligned}\left(-4m-3n\right)^2& \xlongequal{ S1 } \left(4m+3n\right)^2 \xlongequal{ S2 } \color{blue}{\left( 4m \right)^2} +2 \cdot 4m \cdot 3n + \color{red}{\left( 3n \right)^2} = \\[1 em] & = 16m^2+24mn+9n^2\end{aligned} $$ |