Tap the blue circles to see an explanation.
$$ \begin{aligned}(-3x+5)(x^2+7x+5)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}-3x^3-21x^2-15x+5x^2+35x+25 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}-3x^3-16x^2+20x+25\end{aligned} $$ | |
① | Multiply each term of $ \left( \color{blue}{-3x+5}\right) $ by each term in $ \left( x^2+7x+5\right) $. $$ \left( \color{blue}{-3x+5}\right) \cdot \left( x^2+7x+5\right) = -3x^3-21x^2-15x+5x^2+35x+25 $$ |
② | Combine like terms: $$ -3x^3 \color{blue}{-21x^2} \color{red}{-15x} + \color{blue}{5x^2} + \color{red}{35x} +25 = -3x^3 \color{blue}{-16x^2} + \color{red}{20x} +25 $$ |