Tap the blue circles to see an explanation.
$$ \begin{aligned}(-2+x)(4x-5)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}-8x+10+4x^2-5x \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}4x^2-13x+10\end{aligned} $$ | |
① | Multiply each term of $ \left( \color{blue}{-2+x}\right) $ by each term in $ \left( 4x-5\right) $. $$ \left( \color{blue}{-2+x}\right) \cdot \left( 4x-5\right) = -8x+10+4x^2-5x $$ |
② | Combine like terms: $$ \color{blue}{-8x} +10+4x^2 \color{blue}{-5x} = 4x^2 \color{blue}{-13x} +10 $$ |