Tap the blue circles to see an explanation.
$$ \begin{aligned}(-12-p)\cdot(4-p)+60& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}-48+12p-4p+p^2+60 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}p^2+8p+12\end{aligned} $$ | |
① | Multiply each term of $ \left( \color{blue}{-12-p}\right) $ by each term in $ \left( 4-p\right) $. $$ \left( \color{blue}{-12-p}\right) \cdot \left( 4-p\right) = -48+12p-4p+p^2 $$ |
② | Combine like terms: $$ \color{blue}{-48} + \color{red}{12p} \color{red}{-4p} +p^2+ \color{blue}{60} = p^2+ \color{red}{8p} + \color{blue}{12} $$ |