Tap the blue circles to see an explanation.
$$ \begin{aligned}(y-1)(y-3)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}y^2-3y-y+3 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}y^2-4y+3\end{aligned} $$ | |
① | Multiply each term of $ \left( \color{blue}{y-1}\right) $ by each term in $ \left( y-3\right) $. $$ \left( \color{blue}{y-1}\right) \cdot \left( y-3\right) = y^2-3y-y+3 $$ |
② | Combine like terms: $$ y^2 \color{blue}{-3y} \color{blue}{-y} +3 = y^2 \color{blue}{-4y} +3 $$ |