Tap the blue circles to see an explanation.
$$ \begin{aligned}(3x+2)(5x^2-12x-2)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}15x^3-36x^2-6x+10x^2-24x-4 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}15x^3-26x^2-30x-4\end{aligned} $$ | |
① | Multiply each term of $ \left( \color{blue}{3x+2}\right) $ by each term in $ \left( 5x^2-12x-2\right) $. $$ \left( \color{blue}{3x+2}\right) \cdot \left( 5x^2-12x-2\right) = 15x^3-36x^2-6x+10x^2-24x-4 $$ |
② | Combine like terms: $$ 15x^3 \color{blue}{-36x^2} \color{red}{-6x} + \color{blue}{10x^2} \color{red}{-24x} -4 = 15x^3 \color{blue}{-26x^2} \color{red}{-30x} -4 $$ |