Tap the blue circles to see an explanation.
$$ \begin{aligned}(2x+3)(x+1)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}2x^2+2x+3x+3 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}2x^2+5x+3\end{aligned} $$ | |
① | Multiply each term of $ \left( \color{blue}{2x+3}\right) $ by each term in $ \left( x+1\right) $. $$ \left( \color{blue}{2x+3}\right) \cdot \left( x+1\right) = 2x^2+2x+3x+3 $$ |
② | Combine like terms: $$ 2x^2+ \color{blue}{2x} + \color{blue}{3x} +3 = 2x^2+ \color{blue}{5x} +3 $$ |