Tap the blue circles to see an explanation.
$$ \begin{aligned}(x+1)(x+1)-x-9& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}x^2+x+x+1-x-9 \xlongequal{ } \\[1 em] & \xlongequal{ }x^2+ \cancel{x}+ \cancel{x}+1 -\cancel{x}-9 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}x^2+x-8\end{aligned} $$ | |
① | Multiply each term of $ \left( \color{blue}{x+1}\right) $ by each term in $ \left( x+1\right) $. $$ \left( \color{blue}{x+1}\right) \cdot \left( x+1\right) = x^2+x+x+1 $$ |
② | Combine like terms: $$ x^2+ \, \color{blue}{ \cancel{x}} \,+ \, \color{green}{ \cancel{x}} \,+ \color{blue}{1} \, \color{green}{ -\cancel{x}} \, \color{blue}{-9} = x^2+ \color{green}{x} \color{blue}{-8} $$ |