Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{x-2.5}{2}(4x-10)-\frac{25}{6}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{4x^2-18x+20}{2}-\frac{25}{6} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{12x^2-54x+35}{6}\end{aligned} $$ | |
① | Step 1: Write $ 4x-10 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{x-2}{2} \cdot 4x-10 & \xlongequal{\text{Step 1}} \frac{x-2}{2} \cdot \frac{4x-10}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ \left( x-2 \right) \cdot \left( 4x-10 \right) }{ 2 \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 4x^2-10x-8x+20 }{ 2 } = \frac{4x^2-18x+20}{2} \end{aligned} $$ |
② | To subtract raitonal expressions, both fractions must have the same denominator. |