Tap the blue circles to see an explanation.
$$ \begin{aligned}k^3-k^2j+kj^2-j^3-(k^3+k^2j+j^3)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}k^3-jk^2+j^2k-j^3-k^3-jk^2-j^3 \xlongequal{ } \\[1 em] & \xlongequal{ } \cancel{k^3}-jk^2+j^2k-j^3 -\cancel{k^3}-jk^2-j^3 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}-2j^3+j^2k-2jk^2\end{aligned} $$ | |
① | Remove the parentheses by changing the sign of each term within them. $$ - \left( k^3+jk^2+j^3 \right) = -k^3-jk^2-j^3 $$ |
② | Combine like terms: $$ \, \color{blue}{ \cancel{k^3}} \, \color{green}{-jk^2} +j^2k \color{orange}{-j^3} \, \color{blue}{ -\cancel{k^3}} \, \color{green}{-jk^2} \color{orange}{-j^3} = \color{orange}{-2j^3} +j^2k \color{green}{-2jk^2} $$ |