Tap the blue circles to see an explanation.
$$ \begin{aligned}(a+4)x(3a-2)+2x+5& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}(1ax+4x)(3a-2)+2x+5 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}3a^2x-2ax+12ax-8x+2x+5 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}3a^2x+10ax-8x+2x+5 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}3a^2x+10ax-6x+5\end{aligned} $$ | |
① | $$ \left( \color{blue}{a+4}\right) \cdot x = ax+4x $$ |
② | Multiply each term of $ \left( \color{blue}{ax+4x}\right) $ by each term in $ \left( 3a-2\right) $. $$ \left( \color{blue}{ax+4x}\right) \cdot \left( 3a-2\right) = 3a^2x-2ax+12ax-8x $$ |
③ | Combine like terms: $$ 3a^2x \color{blue}{-2ax} + \color{blue}{12ax} -8x = 3a^2x+ \color{blue}{10ax} -8x $$ |
④ | Combine like terms: $$ 3a^2x+10ax \color{blue}{-8x} + \color{blue}{2x} +5 = 3a^2x+10ax \color{blue}{-6x} +5 $$ |