Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{(1-y)^3}{3}+\frac{y(1-y)^2}{6}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{1-3y+3y^2-y^3}{3}+\frac{y(1-2y+y^2)}{6} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}\frac{1-3y+3y^2-y^3}{3}+\frac{y-2y^2+y^3}{6} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} } }}}\frac{-y^3+4y^2-5y+2}{6}\end{aligned} $$ | |
① | Find $ \left(1-y\right)^3 $ using formula $$ (A - B) = A^3 - 3A^2B + 3AB^2 - B^3 $$where $ A = 1 $ and $ B = y $. $$ \left(1-y\right)^3 = 1^3-3 \cdot 1^2 \cdot y + 3 \cdot 1 \cdot y^2-y^3 = 1-3y+3y^2-y^3 $$ |
② | Find $ \left(1-y\right)^2 $ using formula. $$ (A - B)^2 = \color{blue}{A^2} - 2 \cdot A \cdot B + \color{red}{B^2} $$where $ A = \color{blue}{ 1 } $ and $ B = \color{red}{ y }$. $$ \begin{aligned}\left(1-y\right)^2 = \color{blue}{1^2} -2 \cdot 1 \cdot y + \color{red}{y^2} = 1-2y+y^2\end{aligned} $$ |
③ | Find $ \left(1-y\right)^3 $ using formula $$ (A - B) = A^3 - 3A^2B + 3AB^2 - B^3 $$where $ A = 1 $ and $ B = y $. $$ \left(1-y\right)^3 = 1^3-3 \cdot 1^2 \cdot y + 3 \cdot 1 \cdot y^2-y^3 = 1-3y+3y^2-y^3 $$ |
④ | Multiply $ \color{blue}{y} $ by $ \left( 1-2y+y^2\right) $ $$ \color{blue}{y} \cdot \left( 1-2y+y^2\right) = y-2y^2+y^3 $$ |
⑤ | To add raitonal expressions, both fractions must have the same denominator. |