The roots of polynomial $ p(x) $ are:
$$ \begin{aligned}x_1 &= -1\\[1 em]x_2 &= -2\\[1 em]x_3 &= -3\\[1 em]x_4 &= -4\\[1 em]x_5 &= -5 \end{aligned} $$Step 1:
Use rational root test to find out that the $ \color{blue}{ x = -1 } $ is a root of polynomial $ x^5+15x^4+85x^3+225x^2+274x+120 $.
The Rational Root Theorem tells us that if the polynomial has a rational zero then it must be a fraction $ \dfrac{ \color{blue}{p}}{ \color{red}{q} } $, where $ p $ is a factor of the constant term and $ q $ is a factor of the leading coefficient.
The constant term is $ \color{blue}{ 120 } $, with a single factor of 1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 20, 24, 30, 40, 60 and 120.
The leading coefficient is $ \color{red}{ 1 }$, with a single factor of 1.
The POSSIBLE zeroes are:
$$ \begin{aligned} \dfrac{\color{blue}{p}}{\color{red}{q}} = & \dfrac{ \text{ factors of 120 }}{\text{ factors of 1 }} = \pm \dfrac{\text{ ( 1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 20, 24, 30, 40, 60, 120 ) }}{\text{ ( 1 ) }} = \\[1 em] = & \pm \frac{ 1}{ 1} \pm \frac{ 2}{ 1} \pm \frac{ 3}{ 1} \pm \frac{ 4}{ 1} \pm \frac{ 5}{ 1} \pm \frac{ 6}{ 1} \pm \frac{ 8}{ 1} \pm \frac{ 10}{ 1} \pm \frac{ 12}{ 1} \pm \frac{ 15}{ 1} \pm \frac{ 20}{ 1} \pm \frac{ 24}{ 1} \pm \frac{ 30}{ 1} \pm \frac{ 40}{ 1} \pm \frac{ 60}{ 1} \pm \frac{ 120}{ 1} ~~ \end{aligned} $$Substitute the possible roots one by one into the polynomial to find the actual roots. Start first with the whole numbers.
We can see that $ p\left( -1 \right) = 0 $ so $ x = -1 $ is a root of a polynomial $ p(x) $.
To find remaining zeros we use Factor Theorem. This theorem states that if $ \dfrac{p}{q} $ is root of the polynomial then the polynomial can be divided by $ \color{blue}{qx − p} $. In this example we divide polynomial $ p $ by $ \color{blue}{ x+1 }$
$$ \frac{ x^5+15x^4+85x^3+225x^2+274x+120}{ x+1} = x^4+14x^3+71x^2+154x+120 $$Step 2:
The next rational root is $ x = -1 $
$$ \frac{ x^5+15x^4+85x^3+225x^2+274x+120}{ x+1} = x^4+14x^3+71x^2+154x+120 $$Step 3:
The next rational root is $ x = -2 $
$$ \frac{ x^4+14x^3+71x^2+154x+120}{ x+2} = x^3+12x^2+47x+60 $$Step 4:
The next rational root is $ x = -3 $
$$ \frac{ x^3+12x^2+47x+60}{ x+3} = x^2+9x+20 $$Step 5:
The next rational root is $ x = -4 $
$$ \frac{ x^2+9x+20}{ x+4} = x+5 $$Step 6:
To find the last zero, solve equation $ x+5 = 0 $
$$ \begin{aligned} x+5 & = 0 \\[1 em] x & = -5 \end{aligned} $$