The roots of polynomial $ p(x) $ are:
$$ \begin{aligned}x_1 &= 2\\[1 em]x_2 &= 6\\[1 em]x_3 &= -4\\[1 em]x_4 &= -7 \end{aligned} $$Step 1:
Use rational root test to find out that the $ \color{blue}{ x = 2 } $ is a root of polynomial $ x^4+3x^3-48x^2-92x+336 $.
The Rational Root Theorem tells us that if the polynomial has a rational zero then it must be a fraction $ \dfrac{ \color{blue}{p}}{ \color{red}{q} } $, where $ p $ is a factor of the constant term and $ q $ is a factor of the leading coefficient.
The constant term is $ \color{blue}{ 336 } $, with a single factor of 1, 2, 3, 4, 6, 7, 8, 12, 14, 16, 21, 24, 28, 42, 48, 56, 84, 112, 168 and 336.
The leading coefficient is $ \color{red}{ 1 }$, with a single factor of 1.
The POSSIBLE zeroes are:
$$ \begin{aligned} \dfrac{\color{blue}{p}}{\color{red}{q}} = & \dfrac{ \text{ factors of 336 }}{\text{ factors of 1 }} = \pm \dfrac{\text{ ( 1, 2, 3, 4, 6, 7, 8, 12, 14, 16, 21, 24, 28, 42, 48, 56, 84, 112, 168, 336 ) }}{\text{ ( 1 ) }} = \\[1 em] = & \pm \frac{ 1}{ 1} \pm \frac{ 2}{ 1} \pm \frac{ 3}{ 1} \pm \frac{ 4}{ 1} \pm \frac{ 6}{ 1} \pm \frac{ 7}{ 1} \pm \frac{ 8}{ 1} \pm \frac{ 12}{ 1} \pm \frac{ 14}{ 1} \pm \frac{ 16}{ 1} \pm \frac{ 21}{ 1} \pm \frac{ 24}{ 1} \pm \frac{ 28}{ 1} \pm \frac{ 42}{ 1} \pm \frac{ 48}{ 1} \pm \frac{ 56}{ 1} \pm \frac{ 84}{ 1} \pm \frac{ 112}{ 1} \pm \frac{ 168}{ 1} \pm \frac{ 336}{ 1} ~~ \end{aligned} $$Substitute the possible roots one by one into the polynomial to find the actual roots. Start first with the whole numbers.
We can see that $ p\left( 2 \right) = 0 $ so $ x = 2 $ is a root of a polynomial $ p(x) $.
To find remaining zeros we use Factor Theorem. This theorem states that if $ \dfrac{p}{q} $ is root of the polynomial then the polynomial can be divided by $ \color{blue}{qx − p} $. In this example we divide polynomial $ p $ by $ \color{blue}{ x-2 }$
$$ \frac{ x^4+3x^3-48x^2-92x+336}{ x-2} = x^3+5x^2-38x-168 $$Step 2:
The next rational root is $ x = 2 $
$$ \frac{ x^4+3x^3-48x^2-92x+336}{ x-2} = x^3+5x^2-38x-168 $$Step 3:
The next rational root is $ x = 6 $
$$ \frac{ x^3+5x^2-38x-168}{ x-6} = x^2+11x+28 $$Step 4:
The next rational root is $ x = -4 $
$$ \frac{ x^2+11x+28}{ x+4} = x+7 $$Step 5:
To find the last zero, solve equation $ x+7 = 0 $
$$ \begin{aligned} x+7 & = 0 \\[1 em] x & = -7 \end{aligned} $$