The roots of polynomial $ p(x) $ are:
$$ \begin{aligned}x_1 &= 14.7528\\[1 em]x_2 &= -813.2528 \end{aligned} $$Step 1:
Get rid of fractions by multipling equation by $ \color{blue}{ 100 } $.
$$ \begin{aligned} x^2-\frac{1199775}{100}+\frac{7985}{10}x & = 0 ~~~ / \cdot \color{blue}{ 100 } \\[1 em] 100x^2-1199775+79850x & = 0 \end{aligned} $$Step 2:
Write polynomial in descending order
$$ \begin{aligned} 100x^2-1199775+79850x & = 0\\[1 em] 100x^2+79850x-1199775 & = 0 \end{aligned} $$Step 3:
The solutions of $ 100x^2+79850x-1199775 = 0 $ are: $ x = -\dfrac{ 1597 }{ 4 }-\dfrac{\sqrt{ 2742373 }}{ 4 } ~ \text{and} ~ x = -\dfrac{ 1597 }{ 4 }+\dfrac{\sqrt{ 2742373 }}{ 4 }$.
You can use step-by-step quadratic equation solver to see a detailed explanation on how to solve this quadratic equation.