The roots of polynomial $ p(x) $ are:
$$ \begin{aligned}x_1 &= 3\\[1 em]x_2 &= -2\\[1 em]x_3 &= \frac{ 4 }{ 3 }\\[1 em]x_4 &= -\frac{ 4 }{ 3 } \end{aligned} $$Step 1:
Use rational root test to find out that the $ \color{blue}{ x = 3 } $ is a root of polynomial $ 9x^4-9x^3-70x^2+16x+96 $.
The Rational Root Theorem tells us that if the polynomial has a rational zero then it must be a fraction $ \dfrac{ \color{blue}{p}}{ \color{red}{q} } $, where $ p $ is a factor of the constant term and $ q $ is a factor of the leading coefficient.
The constant term is $ \color{blue}{ 96 } $, with factors of 1, 2, 3, 4, 6, 8, 12, 16, 24, 32, 48 and 96.
The leading coefficient is $ \color{red}{ 9 }$, with factors of 1, 3 and 9.
The POSSIBLE zeroes are:
$$ \begin{aligned} \dfrac{\color{blue}{p}}{\color{red}{q}} = & \dfrac{ \text{ factors of 96 }}{\text{ factors of 9 }} = \pm \dfrac{\text{ ( 1, 2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 96 ) }}{\text{ ( 1, 3, 9 ) }} = \\[1 em] = & \pm \frac{ 1}{ 1} \pm \frac{ 2}{ 1} \pm \frac{ 3}{ 1} \pm \frac{ 4}{ 1} \pm \frac{ 6}{ 1} \pm \frac{ 8}{ 1} \pm \frac{ 12}{ 1} \pm \frac{ 16}{ 1} \pm \frac{ 24}{ 1} \pm \frac{ 32}{ 1} \pm \frac{ 48}{ 1} \pm \frac{ 96}{ 1} ~~ \pm \frac{ 1}{ 3} \pm \frac{ 2}{ 3} \pm \frac{ 3}{ 3} \pm \frac{ 4}{ 3} \pm \frac{ 6}{ 3} \pm \frac{ 8}{ 3} \pm \frac{ 12}{ 3} \pm \frac{ 16}{ 3} \pm \frac{ 24}{ 3} \pm \frac{ 32}{ 3} \pm \frac{ 48}{ 3} \pm \frac{ 96}{ 3} ~~ \pm \frac{ 1}{ 9} \pm \frac{ 2}{ 9} \pm \frac{ 3}{ 9} \pm \frac{ 4}{ 9} \pm \frac{ 6}{ 9} \pm \frac{ 8}{ 9} \pm \frac{ 12}{ 9} \pm \frac{ 16}{ 9} \pm \frac{ 24}{ 9} \pm \frac{ 32}{ 9} \pm \frac{ 48}{ 9} \pm \frac{ 96}{ 9} ~~ \end{aligned} $$Substitute the possible roots one by one into the polynomial to find the actual roots. Start first with the whole numbers.
We can see that $ p\left( 3 \right) = 0 $ so $ x = 3 $ is a root of a polynomial $ p(x) $.
To find remaining zeros we use Factor Theorem. This theorem states that if $ \dfrac{p}{q} $ is root of the polynomial then the polynomial can be divided by $ \color{blue}{qx − p} $. In this example we divide polynomial $ p $ by $ \color{blue}{ x-3 }$
$$ \frac{ 9x^4-9x^3-70x^2+16x+96}{ x-3} = 9x^3+18x^2-16x-32 $$Step 2:
The next rational root is $ x = 3 $
$$ \frac{ 9x^4-9x^3-70x^2+16x+96}{ x-3} = 9x^3+18x^2-16x-32 $$Step 3:
The next rational root is $ x = -2 $
$$ \frac{ 9x^3+18x^2-16x-32}{ x+2} = 9x^2-16 $$Step 4:
The next rational root is $ x = \dfrac{ 4 }{ 3 } $
$$ \frac{ 9x^2-16}{ 3x-4} = 3x+4 $$Step 5:
To find the last zero, solve equation $ 3x+4 = 0 $
$$ \begin{aligned} 3x+4 & = 0 \\[1 em] 3 \cdot x & = -4 \\[1 em] x & = - \frac{ 4 }{ 3 } \end{aligned} $$