The roots of polynomial $ p(x) $ are:
$$ \begin{aligned}x_1 &= 1.4625\\[1 em]x_2 &= 0.7597 \end{aligned} $$Step 1:
Get rid of fractions by multipling equation by $ \color{blue}{ 10 } $.
$$ \begin{aligned} \frac{9}{10}x^2-2x+1 & = 0 ~~~ / \cdot \color{blue}{ 10 } \\[1 em] 9x^2-20x+10 & = 0 \end{aligned} $$Step 2:
The solutions of $ 9x^2-20x+10 = 0 $ are: $ x = \dfrac{ 10 }{ 9 }-\dfrac{\sqrt{ 10 }}{ 9 } ~ \text{and} ~ x = \dfrac{ 10 }{ 9 }+\dfrac{\sqrt{ 10 }}{ 9 }$.
You can use step-by-step quadratic equation solver to see a detailed explanation on how to solve this quadratic equation.