The roots of polynomial $ p(x) $ are:
$$ \begin{aligned}x_1 &= 0\\[1 em]x_2 &= 1.8081\\[1 em]x_3 &= -1.4748 \end{aligned} $$Step 1:
Write polynomial in descending order
$$ \begin{aligned} 8x-3x^3+x^2 & = 0\\[1 em] -3x^3+x^2+8x & = 0 \end{aligned} $$Step 2:
Factor out $ \color{blue}{ -x }$ from $ -3x^3+x^2+8x $ and solve two separate equations:
$$ \begin{aligned} -3x^3+x^2+8x & = 0\\[1 em] \color{blue}{ -x }\cdot ( 3x^2-x-8 ) & = 0 \\[1 em] \color{blue}{ -x = 0} ~~ \text{or} ~~ 3x^2-x-8 & = 0 \end{aligned} $$One solution is $ \color{blue}{ x = 0 } $. Use second equation to find the remaining roots.
Step 3:
The solutions of $ 3x^2-x-8 = 0 $ are: $ x = \dfrac{ 1 }{ 6 }-\dfrac{\sqrt{ 97 }}{ 6 } ~ \text{and} ~ x = \dfrac{ 1 }{ 6 }+\dfrac{\sqrt{ 97 }}{ 6 }$.
You can use step-by-step quadratic equation solver to see a detailed explanation on how to solve this quadratic equation.