The roots of polynomial $ p(x) $ are:
$$ \begin{aligned}x_1 &= -3\\[1 em]x_2 &= \frac{ 3 }{ 8 }\\[1 em]x_3 &= -3 \end{aligned} $$Step 1:
Use rational root test to find out that the $ \color{blue}{ x = -3 } $ is a root of polynomial $ 8x^3+45x^2+54x-27 $.
The Rational Root Theorem tells us that if the polynomial has a rational zero then it must be a fraction $ \dfrac{ \color{blue}{p}}{ \color{red}{q} } $, where $ p $ is a factor of the constant term and $ q $ is a factor of the leading coefficient.
The constant term is $ \color{blue}{ 27 } $, with factors of 1, 3, 9 and 27.
The leading coefficient is $ \color{red}{ 8 }$, with factors of 1, 2, 4 and 8.
The POSSIBLE zeroes are:
$$ \begin{aligned} \dfrac{\color{blue}{p}}{\color{red}{q}} = & \dfrac{ \text{ factors of 27 }}{\text{ factors of 8 }} = \pm \dfrac{\text{ ( 1, 3, 9, 27 ) }}{\text{ ( 1, 2, 4, 8 ) }} = \\[1 em] = & \pm \frac{ 1}{ 1} \pm \frac{ 3}{ 1} \pm \frac{ 9}{ 1} \pm \frac{ 27}{ 1} ~~ \pm \frac{ 1}{ 2} \pm \frac{ 3}{ 2} \pm \frac{ 9}{ 2} \pm \frac{ 27}{ 2} ~~ \pm \frac{ 1}{ 4} \pm \frac{ 3}{ 4} \pm \frac{ 9}{ 4} \pm \frac{ 27}{ 4} ~~ \pm \frac{ 1}{ 8} \pm \frac{ 3}{ 8} \pm \frac{ 9}{ 8} \pm \frac{ 27}{ 8}\\[ 1 em] \end{aligned} $$Substitute the possible roots one by one into the polynomial to find the actual roots. Start first with the whole numbers.
We can see that $ p\left( -3 \right) = 0 $ so $ x = -3 $ is a root of a polynomial $ p(x) $.
To find remaining zeros we use Factor Theorem. This theorem states that if $ \dfrac{p}{q} $ is root of the polynomial then the polynomial can be divided by $ \color{blue}{qx − p} $. In this example we divide polynomial $ p $ by $ \color{blue}{ x+3 }$
$$ \frac{ 8x^3+45x^2+54x-27}{ x+3} = 8x^2+21x-9 $$Step 2:
The next rational root is $ x = -3 $
$$ \frac{ 8x^3+45x^2+54x-27}{ x+3} = 8x^2+21x-9 $$Step 3:
The next rational root is $ x = \dfrac{ 3 }{ 8 } $
$$ \frac{ 8x^2+21x-9}{ 8x-3} = x+3 $$Step 4:
To find the last zero, solve equation $ x+3 = 0 $
$$ \begin{aligned} x+3 & = 0 \\[1 em] x & = -3 \end{aligned} $$