The roots of polynomial $ p(n) $ are:
$$ \begin{aligned}n_1 &= 0\\[1 em]n_2 &= -\frac{ 3 }{ 8 } \end{aligned} $$Step 1:
Factor out $ \color{blue}{ n^2 }$ from $ 8n^3+3n^2 $ and solve two separate equations:
$$ \begin{aligned} 8n^3+3n^2 & = 0\\[1 em] \color{blue}{ n^2 }\cdot ( 8n+3 ) & = 0 \\[1 em] \color{blue}{ n^2 = 0} ~~ \text{or} ~~ 8n+3 & = 0 \end{aligned} $$One solution is $ \color{blue}{ n = 0 } $. Use second equation to find the remaining roots.
Step 2:
To find the last zero, solve equation $ 8n+3 = 0 $
$$ \begin{aligned} 8n+3 & = 0 \\[1 em] 8 \cdot n & = -3 \\[1 em] n & = - \frac{ 3 }{ 8 } \end{aligned} $$