Step 1:
Use rational root test to find out that the x = 4 is a root of polynomial 80 x 7 − 2030 x 6 + 21600 x 5 − 124500 x 4 + 417960 x 3 − 812430 x 2 + 839800 x − 352000 .
The Rational Root Theorem tells us that if the polynomial has a rational zero then it must be a fraction q p ,
where p is a factor of the constant term and q is a factor of the leading coefficient.
The constant term is 352000 , with factors of 1, 2, 4, 5, 8, 10, 11, 16, 20, 22, 25, 32, 40, 44, 50, 55, 64, 80, 88, 100, 110, 125, 128, 160, 176, 200, 220, 250, 256, 275, 320, 352, 400, 440, 500, 550, 640, 704, 800, 880, 1000, 1100, 1280, 1375, 1408, 1600, 1760, 2000, 2200, 2750, 2816, 3200, 3520, 4000, 4400, 5500, 6400, 7040, 8000, 8800, 11000, 14080, 16000, 17600, 22000, 32000, 35200, 44000, 70400, 88000, 176000 and 352000 .
The leading coefficient is 80 , with factors of 1, 2, 4, 5, 8, 10, 16, 20, 40 and 80 .
The POSSIBLE zeroes are:
q p = = factors of 80 factors of 352000 = ± ( 1, 2, 4, 5, 8, 10, 16, 20, 40, 80 ) ( 1, 2, 4, 5, 8, 10, 11, 16, 20, 22, 25, 32, 40, 44, 50, 55, 64, 80, 88, 100, 110, 125, 128, 160, 176, 200, 220, 250, 256, 275, 320, 352, 400, 440, 500, 550, 640, 704, 800, 880, 1000, 1100, 1280, 1375, 1408, 1600, 1760, 2000, 2200, 2750, 2816, 3200, 3520, 4000, 4400, 5500, 6400, 7040, 8000, 8800, 11000, 14080, 16000, 17600, 22000, 32000, 35200, 44000, 70400, 88000, 176000, 352000 ) = ± 1 1 ± 1 2 ± 1 4 ± 1 5 ± 1 8 ± 1 10 ± 1 11 ± 1 16 ± 1 20 ± 1 22 ± 1 25 ± 1 32 ± 1 40 ± 1 44 ± 1 50 ± 1 55 ± 1 64 ± 1 80 ± 1 88 ± 1 100 ± 1 110 ± 1 125 ± 1 128 ± 1 160 ± 1 176 ± 1 200 ± 1 220 ± 1 250 ± 1 256 ± 1 275 ± 1 320 ± 1 352 ± 1 400 ± 1 440 ± 1 500 ± 1 550 ± 1 640 ± 1 704 ± 1 800 ± 1 880 ± 1 1000 ± 1 1100 ± 1 1280 ± 1 1375 ± 1 1408 ± 1 1600 ± 1 1760 ± 1 2000 ± 1 2200 ± 1 2750 ± 1 2816 ± 1 3200 ± 1 3520 ± 1 4000 ± 1 4400 ± 1 5500 ± 1 6400 ± 1 7040 ± 1 8000 ± 1 8800 ± 1 11000 ± 1 14080 ± 1 16000 ± 1 17600 ± 1 22000 ± 1 32000 ± 1 35200 ± 1 44000 ± 1 70400 ± 1 88000 ± 1 176000 ± 1 352000 ± 2 1 ± 2 2 ± 2 4 ± 2 5 ± 2 8 ± 2 10 ± 2 11 ± 2 16 ± 2 20 ± 2 22 ± 2 25 ± 2 32 ± 2 40 ± 2 44 ± 2 50 ± 2 55 ± 2 64 ± 2 80 ± 2 88 ± 2 100 ± 2 110 ± 2 125 ± 2 128 ± 2 160 ± 2 176 ± 2 200 ± 2 220 ± 2 250 ± 2 256 ± 2 275 ± 2 320 ± 2 352 ± 2 400 ± 2 440 ± 2 500 ± 2 550 ± 2 640 ± 2 704 ± 2 800 ± 2 880 ± 2 1000 ± 2 1100 ± 2 1280 ± 2 1375 ± 2 1408 ± 2 1600 ± 2 1760 ± 2 2000 ± 2 2200 ± 2 2750 ± 2 2816 ± 2 3200 ± 2 3520 ± 2 4000 ± 2 4400 ± 2 5500 ± 2 6400 ± 2 7040 ± 2 8000 ± 2 8800 ± 2 11000 ± 2 14080 ± 2 16000 ± 2 17600 ± 2 22000 ± 2 32000 ± 2 35200 ± 2 44000 ± 2 70400 ± 2 88000 ± 2 176000 ± 2 352000 ± 4 1 ± 4 2 ± 4 4 ± 4 5 ± 4 8 ± 4 10 ± 4 11 ± 4 16 ± 4 20 ± 4 22 ± 4 25 ± 4 32 ± 4 40 ± 4 44 ± 4 50 ± 4 55 ± 4 64 ± 4 80 ± 4 88 ± 4 100 ± 4 110 ± 4 125 ± 4 128 ± 4 160 ± 4 176 ± 4 200 ± 4 220 ± 4 250 ± 4 256 ± 4 275 ± 4 320 ± 4 352 ± 4 400 ± 4 440 ± 4 500 ± 4 550 ± 4 640 ± 4 704 ± 4 800 ± 4 880 ± 4 1000 ± 4 1100 ± 4 1280 ± 4 1375 ± 4 1408 ± 4 1600 ± 4 1760 ± 4 2000 ± 4 2200 ± 4 2750 ± 4 2816 ± 4 3200 ± 4 3520 ± 4 4000 ± 4 4400 ± 4 5500 ± 4 6400 ± 4 7040 ± 4 8000 ± 4 8800 ± 4 11000 ± 4 14080 ± 4 16000 ± 4 17600 ± 4 22000 ± 4 32000 ± 4 35200 ± 4 44000 ± 4 70400 ± 4 88000 ± 4 176000 ± 4 352000 ± 5 1 ± 5 2 ± 5 4 ± 5 5 ± 5 8 ± 5 10 ± 5 11 ± 5 16 ± 5 20 ± 5 22 ± 5 25 ± 5 32 ± 5 40 ± 5 44 ± 5 50 ± 5 55 ± 5 64 ± 5 80 ± 5 88 ± 5 100 ± 5 110 ± 5 125 ± 5 128 ± 5 160 ± 5 176 ± 5 200 ± 5 220 ± 5 250 ± 5 256 ± 5 275 ± 5 320 ± 5 352 ± 5 400 ± 5 440 ± 5 500 ± 5 550 ± 5 640 ± 5 704 ± 5 800 ± 5 880 ± 5 1000 ± 5 1100 ± 5 1280 ± 5 1375 ± 5 1408 ± 5 1600 ± 5 1760 ± 5 2000 ± 5 2200 ± 5 2750 ± 5 2816 ± 5 3200 ± 5 3520 ± 5 4000 ± 5 4400 ± 5 5500 ± 5 6400 ± 5 7040 ± 5 8000 ± 5 8800 ± 5 11000 ± 5 14080 ± 5 16000 ± 5 17600 ± 5 22000 ± 5 32000 ± 5 35200 ± 5 44000 ± 5 70400 ± 5 88000 ± 5 176000 ± 5 352000 ± 8 1 ± 8 2 ± 8 4 ± 8 5 ± 8 8 ± 8 10 ± 8 11 ± 8 16 ± 8 20 ± 8 22 ± 8 25 ± 8 32 ± 8 40 ± 8 44 ± 8 50 ± 8 55 ± 8 64 ± 8 80 ± 8 88 ± 8 100 ± 8 110 ± 8 125 ± 8 128 ± 8 160 ± 8 176 ± 8 200 ± 8 220 ± 8 250 ± 8 256 ± 8 275 ± 8 320 ± 8 352 ± 8 400 ± 8 440 ± 8 500 ± 8 550 ± 8 640 ± 8 704 ± 8 800 ± 8 880 ± 8 1000 ± 8 1100 ± 8 1280 ± 8 1375 ± 8 1408 ± 8 1600 ± 8 1760 ± 8 2000 ± 8 2200 ± 8 2750 ± 8 2816 ± 8 3200 ± 8 3520 ± 8 4000 ± 8 4400 ± 8 5500 ± 8 6400 ± 8 7040 ± 8 8000 ± 8 8800 ± 8 11000 ± 8 14080 ± 8 16000 ± 8 17600 ± 8 22000 ± 8 32000 ± 8 35200 ± 8 44000 ± 8 70400 ± 8 88000 ± 8 176000 ± 8 352000 ± 10 1 ± 10 2 ± 10 4 ± 10 5 ± 10 8 ± 10 10 ± 10 11 ± 10 16 ± 10 20 ± 10 22 ± 10 25 ± 10 32 ± 10 40 ± 10 44 ± 10 50 ± 10 55 ± 10 64 ± 10 80 ± 10 88 ± 10 100 ± 10 110 ± 10 125 ± 10 128 ± 10 160 ± 10 176 ± 10 200 ± 10 220 ± 10 250 ± 10 256 ± 10 275 ± 10 320 ± 10 352 ± 10 400 ± 10 440 ± 10 500 ± 10 550 ± 10 640 ± 10 704 ± 10 800 ± 10 880 ± 10 1000 ± 10 1100 ± 10 1280 ± 10 1375 ± 10 1408 ± 10 1600 ± 10 1760 ± 10 2000 ± 10 2200 ± 10 2750 ± 10 2816 ± 10 3200 ± 10 3520 ± 10 4000 ± 10 4400 ± 10 5500 ± 10 6400 ± 10 7040 ± 10 8000 ± 10 8800 ± 10 11000 ± 10 14080 ± 10 16000 ± 10 17600 ± 10 22000 ± 10 32000 ± 10 35200 ± 10 44000 ± 10 70400 ± 10 88000 ± 10 176000 ± 10 352000 ± 16 1 ± 16 2 ± 16 4 ± 16 5 ± 16 8 ± 16 10 ± 16 11 ± 16 16 ± 16 20 ± 16 22 ± 16 25 ± 16 32 ± 16 40 ± 16 44 ± 16 50 ± 16 55 ± 16 64 ± 16 80 ± 16 88 ± 16 100 ± 16 110 ± 16 125 ± 16 128 ± 16 160 ± 16 176 ± 16 200 ± 16 220 ± 16 250 ± 16 256 ± 16 275 ± 16 320 ± 16 352 ± 16 400 ± 16 440 ± 16 500 ± 16 550 ± 16 640 ± 16 704 ± 16 800 ± 16 880 ± 16 1000 ± 16 1100 ± 16 1280 ± 16 1375 ± 16 1408 ± 16 1600 ± 16 1760 ± 16 2000 ± 16 2200 ± 16 2750 ± 16 2816 ± 16 3200 ± 16 3520 ± 16 4000 ± 16 4400 ± 16 5500 ± 16 6400 ± 16 7040 ± 16 8000 ± 16 8800 ± 16 11000 ± 16 14080 ± 16 16000 ± 16 17600 ± 16 22000 ± 16 32000 ± 16 35200 ± 16 44000 ± 16 70400 ± 16 88000 ± 16 176000 ± 16 352000 ± 20 1 ± 20 2 ± 20 4 ± 20 5 ± 20 8 ± 20 10 ± 20 11 ± 20 16 ± 20 20 ± 20 22 ± 20 25 ± 20 32 ± 20 40 ± 20 44 ± 20 50 ± 20 55 ± 20 64 ± 20 80 ± 20 88 ± 20 100 ± 20 110 ± 20 125 ± 20 128 ± 20 160 ± 20 176 ± 20 200 ± 20 220 ± 20 250 ± 20 256 ± 20 275 ± 20 320 ± 20 352 ± 20 400 ± 20 440 ± 20 500 ± 20 550 ± 20 640 ± 20 704 ± 20 800 ± 20 880 ± 20 1000 ± 20 1100 ± 20 1280 ± 20 1375 ± 20 1408 ± 20 1600 ± 20 1760 ± 20 2000 ± 20 2200 ± 20 2750 ± 20 2816 ± 20 3200 ± 20 3520 ± 20 4000 ± 20 4400 ± 20 5500 ± 20 6400 ± 20 7040 ± 20 8000 ± 20 8800 ± 20 11000 ± 20 14080 ± 20 16000 ± 20 17600 ± 20 22000 ± 20 32000 ± 20 35200 ± 20 44000 ± 20 70400 ± 20 88000 ± 20 176000 ± 20 352000 ± 40 1 ± 40 2 ± 40 4 ± 40 5 ± 40 8 ± 40 10 ± 40 11 ± 40 16 ± 40 20 ± 40 22 ± 40 25 ± 40 32 ± 40 40 ± 40 44 ± 40 50 ± 40 55 ± 40 64 ± 40 80 ± 40 88 ± 40 100 ± 40 110 ± 40 125 ± 40 128 ± 40 160 ± 40 176 ± 40 200 ± 40 220 ± 40 250 ± 40 256 ± 40 275 ± 40 320 ± 40 352 ± 40 400 ± 40 440 ± 40 500 ± 40 550 ± 40 640 ± 40 704 ± 40 800 ± 40 880 ± 40 1000 ± 40 1100 ± 40 1280 ± 40 1375 ± 40 1408 ± 40 1600 ± 40 1760 ± 40 2000 ± 40 2200 ± 40 2750 ± 40 2816 ± 40 3200 ± 40 3520 ± 40 4000 ± 40 4400 ± 40 5500 ± 40 6400 ± 40 7040 ± 40 8000 ± 40 8800 ± 40 11000 ± 40 14080 ± 40 16000 ± 40 17600 ± 40 22000 ± 40 32000 ± 40 35200 ± 40 44000 ± 40 70400 ± 40 88000 ± 40 176000 ± 40 352000 ± 80 1 ± 80 2 ± 80 4 ± 80 5 ± 80 8 ± 80 10 ± 80 11 ± 80 16 ± 80 20 ± 80 22 ± 80 25 ± 80 32 ± 80 40 ± 80 44 ± 80 50 ± 80 55 ± 80 64 ± 80 80 ± 80 88 ± 80 100 ± 80 110 ± 80 125 ± 80 128 ± 80 160 ± 80 176 ± 80 200 ± 80 220 ± 80 250 ± 80 256 ± 80 275 ± 80 320 ± 80 352 ± 80 400 ± 80 440 ± 80 500 ± 80 550 ± 80 640 ± 80 704 ± 80 800 ± 80 880 ± 80 1000 ± 80 1100 ± 80 1280 ± 80 1375 ± 80 1408 ± 80 1600 ± 80 1760 ± 80 2000 ± 80 2200 ± 80 2750 ± 80 2816 ± 80 3200 ± 80 3520 ± 80 4000 ± 80 4400 ± 80 5500 ± 80 6400 ± 80 7040 ± 80 8000 ± 80 8800 ± 80 11000 ± 80 14080 ± 80 16000 ± 80 17600 ± 80 22000 ± 80 32000 ± 80 35200 ± 80 44000 ± 80 70400 ± 80 88000 ± 80 176000 ± 80 352000 Substitute the possible roots one by one into the polynomial to find the actual roots . Start first with the whole numbers.
We can see that p ( 4 ) = 0 so x = 4 is a root of a polynomial p ( x ) .
To find remaining zeros we use Factor Theorem.
This theorem states that if q p is root of the polynomial then the polynomial can be divided by q x − p .
In this example we divide polynomial p by x − 4
x − 4 80 x 7 − 2030 x 6 + 21600 x 5 − 124500 x 4 + 417960 x 3 − 812430 x 2 + 839800 x − 352000 = 80 x 6 − 1710 x 5 + 14760 x 4 − 65460 x 3 + 156120 x 2 − 187950 x + 88000 Step 2:
The next rational root is x = 4
x − 4 80 x 7 − 2030 x 6 + 21600 x 5 − 124500 x 4 + 417960 x 3 − 812430 x 2 + 839800 x − 352000 = 80 x 6 − 1710 x 5 + 14760 x 4 − 65460 x 3 + 156120 x 2 − 187950 x + 88000 Step 3:
The next rational root is x = 5
x − 5 80 x 6 − 1710 x 5 + 14760 x 4 − 65460 x 3 + 156120 x 2 − 187950 x + 88000 = 80 x 5 − 1310 x 4 + 8210 x 3 − 24410 x 2 + 34070 x − 17600 Step 4:
The next rational root is x = 5
x − 5 80 x 5 − 1310 x 4 + 8210 x 3 − 24410 x 2 + 34070 x − 17600 = 80 x 4 − 910 x 3 + 3660 x 2 − 6110 x + 3520 Step 5:
Polynomial 80 x 4 − 910 x 3 + 3660 x 2 − 6110 x + 3520 has no rational roots that can be found using Rational Root Test, so the roots were found using quartic formulas .
Download Png