The roots of polynomial $ p(x) $ are:
$$ \begin{aligned}x_1 &= 0\\[1 em]x_2 &= \frac{ 35 }{ 6 } \end{aligned} $$Step 1:
Factor out $ \color{blue}{ x^4 }$ from $ 6x^5-35x^4 $ and solve two separate equations:
$$ \begin{aligned} 6x^5-35x^4 & = 0\\[1 em] \color{blue}{ x^4 }\cdot ( 6x-35 ) & = 0 \\[1 em] \color{blue}{ x^4 = 0} ~~ \text{or} ~~ 6x-35 & = 0 \end{aligned} $$One solution is $ \color{blue}{ x = 0 } $. Use second equation to find the remaining roots.
Step 2:
To find the last zero, solve equation $ 6x-35 = 0 $
$$ \begin{aligned} 6x-35 & = 0 \\[1 em] 6 \cdot x & = 35 \\[1 em] x & = \frac{ 35 }{ 6 } \end{aligned} $$