The roots of polynomial $ p(x) $ are:
$$ \begin{aligned}x_1 &= \frac{ 3 }{ 2 }\\[1 em]x_2 &= -\frac{ 7 }{ 3 }\\[1 em]x_3 &= 1+2i\\[1 em]x_4 &= 1-2i \end{aligned} $$Step 1:
Use rational root test to find out that the $ \color{blue}{ x = \dfrac{ 3 }{ 2 } } $ is a root of polynomial $ 6x^4-7x^3-x^2+67x-105 $.
The Rational Root Theorem tells us that if the polynomial has a rational zero then it must be a fraction $ \dfrac{ \color{blue}{p}}{ \color{red}{q} } $, where $ p $ is a factor of the constant term and $ q $ is a factor of the leading coefficient.
The constant term is $ \color{blue}{ 105 } $, with factors of 1, 3, 5, 7, 15, 21, 35 and 105.
The leading coefficient is $ \color{red}{ 6 }$, with factors of 1, 2, 3 and 6.
The POSSIBLE zeroes are:
$$ \begin{aligned} \dfrac{\color{blue}{p}}{\color{red}{q}} = & \dfrac{ \text{ factors of 105 }}{\text{ factors of 6 }} = \pm \dfrac{\text{ ( 1, 3, 5, 7, 15, 21, 35, 105 ) }}{\text{ ( 1, 2, 3, 6 ) }} = \\[1 em] = & \pm \frac{ 1}{ 1} \pm \frac{ 3}{ 1} \pm \frac{ 5}{ 1} \pm \frac{ 7}{ 1} \pm \frac{ 15}{ 1} \pm \frac{ 21}{ 1} \pm \frac{ 35}{ 1} \pm \frac{ 105}{ 1} ~~ \pm \frac{ 1}{ 2} \pm \frac{ 3}{ 2} \pm \frac{ 5}{ 2} \pm \frac{ 7}{ 2} \pm \frac{ 15}{ 2} \pm \frac{ 21}{ 2} \pm \frac{ 35}{ 2} \pm \frac{ 105}{ 2} ~~ \pm \frac{ 1}{ 3} \pm \frac{ 3}{ 3} \pm \frac{ 5}{ 3} \pm \frac{ 7}{ 3} \pm \frac{ 15}{ 3} \pm \frac{ 21}{ 3} \pm \frac{ 35}{ 3} \pm \frac{ 105}{ 3} ~~ \pm \frac{ 1}{ 6} \pm \frac{ 3}{ 6} \pm \frac{ 5}{ 6} \pm \frac{ 7}{ 6} \pm \frac{ 15}{ 6} \pm \frac{ 21}{ 6} \pm \frac{ 35}{ 6} \pm \frac{ 105}{ 6}\\[ 1 em] \end{aligned} $$Substitute the possible roots one by one into the polynomial to find the actual roots. Start first with the whole numbers.
We can see that $ p\left( \dfrac{ 3 }{ 2 } \right) = 0 $ so $ x = \dfrac{ 3 }{ 2 } $ is a root of a polynomial $ p(x) $.
To find remaining zeros we use Factor Theorem. This theorem states that if $ \dfrac{p}{q} $ is root of the polynomial then the polynomial can be divided by $ \color{blue}{qx − p} $. In this example we divide polynomial $ p $ by $ \color{blue}{ 2x-3 }$
$$ \frac{ 6x^4-7x^3-x^2+67x-105}{ 2x-3} = 3x^3+x^2+x+35 $$Step 2:
The next rational root is $ x = \dfrac{ 3 }{ 2 } $
$$ \frac{ 6x^4-7x^3-x^2+67x-105}{ 2x-3} = 3x^3+x^2+x+35 $$Step 3:
The next rational root is $ x = -\dfrac{ 7 }{ 3 } $
$$ \frac{ 3x^3+x^2+x+35}{ 3x+7} = x^2-2x+5 $$Step 4:
The solutions of $ x^2-2x+5 = 0 $ are: $ x = 1+2i ~ \text{and} ~ x = 1-2i$.
You can use step-by-step quadratic equation solver to see a detailed explanation on how to solve this quadratic equation.