The roots of polynomial $ p(x) $ are:
$$ \begin{aligned}x_1 &= 0\\[1 em]x_2 &= \frac{ 25 }{ 6 } \end{aligned} $$Step 1:
Get rid of fractions by multipling equation by $ \color{blue}{ 10000 } $.
$$ \begin{aligned} \frac{4}{100}x-\frac{96}{10000}x^2 & = 0 ~~~ / \cdot \color{blue}{ 10000 } \\[1 em] 400x-96x^2 & = 0 \end{aligned} $$Step 2:
Write polynomial in descending order
$$ \begin{aligned} 400x-96x^2 & = 0\\[1 em] -96x^2+400x & = 0 \end{aligned} $$Step 3:
Factor out $ \color{blue}{ -16x }$ from $ -96x^2+400x $ and solve two separate equations:
$$ \begin{aligned} -96x^2+400x & = 0\\[1 em] \color{blue}{ -16x }\cdot ( 6x-25 ) & = 0 \\[1 em] \color{blue}{ -16x = 0} ~~ \text{or} ~~ 6x-25 & = 0 \end{aligned} $$One solution is $ \color{blue}{ x = 0 } $. Use second equation to find the remaining roots.
Step 4:
To find the second zero, solve equation $ 6x-25 = 0 $
$$ \begin{aligned} 6x-25 & = 0 \\[1 em] 6 \cdot x & = 25 \\[1 em] x & = \frac{ 25 }{ 6 } \end{aligned} $$