The roots of polynomial $ p(x) $ are:
$$ \begin{aligned}x_1 &= 0\\[1 em]x_2 &= 1.7169\\[1 em]x_3 &= -1.6287\\[1 em]x_4 &= 5.2451 \end{aligned} $$Step 1:
Combine like terms:
$$ 3x^4-16x^3-7x^2+ \color{blue}{64x} \color{blue}{-20x} = 3x^4-16x^3-7x^2+ \color{blue}{44x} $$Step 2:
Factor out $ \color{blue}{ x }$ from $ 3x^4-16x^3-7x^2+44x $ and solve two separate equations:
$$ \begin{aligned} 3x^4-16x^3-7x^2+44x & = 0\\[1 em] \color{blue}{ x }\cdot ( 3x^3-16x^2-7x+44 ) & = 0 \\[1 em] \color{blue}{ x = 0} ~~ \text{or} ~~ 3x^3-16x^2-7x+44 & = 0 \end{aligned} $$One solution is $ \color{blue}{ x = 0 } $. Use second equation to find the remaining roots.
Step 3:
Polynomial $ 3x^3-16x^2-7x+44 $ has no rational roots that can be found using Rational Root Test, so the roots were found using qubic formulas.