The roots of polynomial $ p(x) $ are:
$$ \begin{aligned}x_1 &= 2\\[1 em]x_2 &= -4\\[1 em]x_3 &= \frac{ 1 }{ 2 }\\[1 em]x_4 &= -2+3i\\[1 em]x_5 &= -2-3i \end{aligned} $$Step 1:
Use rational root test to find out that the $ \color{blue}{ x = 2 } $ is a root of polynomial $ 2x^5+11x^4+20x^3-25x^2-202x+104 $.
The Rational Root Theorem tells us that if the polynomial has a rational zero then it must be a fraction $ \dfrac{ \color{blue}{p}}{ \color{red}{q} } $, where $ p $ is a factor of the constant term and $ q $ is a factor of the leading coefficient.
The constant term is $ \color{blue}{ 104 } $, with factors of 1, 2, 4, 8, 13, 26, 52 and 104.
The leading coefficient is $ \color{red}{ 2 }$, with factors of 1 and 2.
The POSSIBLE zeroes are:
$$ \begin{aligned} \dfrac{\color{blue}{p}}{\color{red}{q}} = & \dfrac{ \text{ factors of 104 }}{\text{ factors of 2 }} = \pm \dfrac{\text{ ( 1, 2, 4, 8, 13, 26, 52, 104 ) }}{\text{ ( 1, 2 ) }} = \\[1 em] = & \pm \frac{ 1}{ 1} \pm \frac{ 2}{ 1} \pm \frac{ 4}{ 1} \pm \frac{ 8}{ 1} \pm \frac{ 13}{ 1} \pm \frac{ 26}{ 1} \pm \frac{ 52}{ 1} \pm \frac{ 104}{ 1} ~~ \pm \frac{ 1}{ 2} \pm \frac{ 2}{ 2} \pm \frac{ 4}{ 2} \pm \frac{ 8}{ 2} \pm \frac{ 13}{ 2} \pm \frac{ 26}{ 2} \pm \frac{ 52}{ 2} \pm \frac{ 104}{ 2} ~~ \end{aligned} $$Substitute the possible roots one by one into the polynomial to find the actual roots. Start first with the whole numbers.
We can see that $ p\left( 2 \right) = 0 $ so $ x = 2 $ is a root of a polynomial $ p(x) $.
To find remaining zeros we use Factor Theorem. This theorem states that if $ \dfrac{p}{q} $ is root of the polynomial then the polynomial can be divided by $ \color{blue}{qx − p} $. In this example we divide polynomial $ p $ by $ \color{blue}{ x-2 }$
$$ \frac{ 2x^5+11x^4+20x^3-25x^2-202x+104}{ x-2} = 2x^4+15x^3+50x^2+75x-52 $$Step 2:
The next rational root is $ x = 2 $
$$ \frac{ 2x^5+11x^4+20x^3-25x^2-202x+104}{ x-2} = 2x^4+15x^3+50x^2+75x-52 $$Step 3:
The next rational root is $ x = -4 $
$$ \frac{ 2x^4+15x^3+50x^2+75x-52}{ x+4} = 2x^3+7x^2+22x-13 $$Step 4:
The next rational root is $ x = \dfrac{ 1 }{ 2 } $
$$ \frac{ 2x^3+7x^2+22x-13}{ 2x-1} = x^2+4x+13 $$Step 5:
The solutions of $ x^2+4x+13 = 0 $ are: $ x = -2+3i ~ \text{and} ~ x = -2-3i$.
You can use step-by-step quadratic equation solver to see a detailed explanation on how to solve this quadratic equation.