The roots of polynomial $ p(x) $ are:
$$ \begin{aligned}x_1 &= 0\\[1 em]x_2 &= -0.2192\\[1 em]x_3 &= -2.2808 \end{aligned} $$Step 1:
Factor out $ \color{blue}{ x }$ from $ 2x^3+5x^2+x $ and solve two separate equations:
$$ \begin{aligned} 2x^3+5x^2+x & = 0\\[1 em] \color{blue}{ x }\cdot ( 2x^2+5x+1 ) & = 0 \\[1 em] \color{blue}{ x = 0} ~~ \text{or} ~~ 2x^2+5x+1 & = 0 \end{aligned} $$One solution is $ \color{blue}{ x = 0 } $. Use second equation to find the remaining roots.
Step 2:
The solutions of $ 2x^2+5x+1 = 0 $ are: $ x = -\dfrac{ 5 }{ 4 }-\dfrac{\sqrt{ 17 }}{ 4 } ~ \text{and} ~ x = -\dfrac{ 5 }{ 4 }+\dfrac{\sqrt{ 17 }}{ 4 }$.
You can use step-by-step quadratic equation solver to see a detailed explanation on how to solve this quadratic equation.