The roots of polynomial $ p(x) $ are:
$$ \begin{aligned}x_1 &= 0\\[1 em]x_2 &= -5\\[1 em]x_3 &= 2.574\\[1 em]x_4 &= -1.7897\\[1 em]x_5 &= -3.9168\\[1 em]x_6 &= 4.2754 \end{aligned} $$Step 1:
Factor out $ \color{blue}{ x }$ from $ 14x^6+54x^5-375x^4-1268x^3+2115x^2+5400x $ and solve two separate equations:
$$ \begin{aligned} 14x^6+54x^5-375x^4-1268x^3+2115x^2+5400x & = 0\\[1 em] \color{blue}{ x }\cdot ( 14x^5+54x^4-375x^3-1268x^2+2115x+5400 ) & = 0 \\[1 em] \color{blue}{ x = 0} ~~ \text{or} ~~ 14x^5+54x^4-375x^3-1268x^2+2115x+5400 & = 0 \end{aligned} $$One solution is $ \color{blue}{ x = 0 } $. Use second equation to find the remaining roots.
Step 2:
Use rational root test to find out that the $ \color{blue}{ x = -5 } $ is a root of polynomial $ 14x^5+54x^4-375x^3-1268x^2+2115x+5400 $.
The Rational Root Theorem tells us that if the polynomial has a rational zero then it must be a fraction $ \dfrac{ \color{blue}{p}}{ \color{red}{q} } $, where $ p $ is a factor of the constant term and $ q $ is a factor of the leading coefficient.
The constant term is $ \color{blue}{ 5400 } $, with factors of 1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 18, 20, 24, 25, 27, 30, 36, 40, 45, 50, 54, 60, 72, 75, 90, 100, 108, 120, 135, 150, 180, 200, 216, 225, 270, 300, 360, 450, 540, 600, 675, 900, 1080, 1350, 1800, 2700 and 5400.
The leading coefficient is $ \color{red}{ 14 }$, with factors of 1, 2, 7 and 14.
The POSSIBLE zeroes are:
$$ \begin{aligned} \dfrac{\color{blue}{p}}{\color{red}{q}} = & \dfrac{ \text{ factors of 5400 }}{\text{ factors of 14 }} = \pm \dfrac{\text{ ( 1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 18, 20, 24, 25, 27, 30, 36, 40, 45, 50, 54, 60, 72, 75, 90, 100, 108, 120, 135, 150, 180, 200, 216, 225, 270, 300, 360, 450, 540, 600, 675, 900, 1080, 1350, 1800, 2700, 5400 ) }}{\text{ ( 1, 2, 7, 14 ) }} = \\[1 em] = & \pm \frac{ 1}{ 1} \pm \frac{ 2}{ 1} \pm \frac{ 3}{ 1} \pm \frac{ 4}{ 1} \pm \frac{ 5}{ 1} \pm \frac{ 6}{ 1} \pm \frac{ 8}{ 1} \pm \frac{ 9}{ 1} \pm \frac{ 10}{ 1} \pm \frac{ 12}{ 1} \pm \frac{ 15}{ 1} \pm \frac{ 18}{ 1} \pm \frac{ 20}{ 1} \pm \frac{ 24}{ 1} \pm \frac{ 25}{ 1} \pm \frac{ 27}{ 1} \pm \frac{ 30}{ 1} \pm \frac{ 36}{ 1} \pm \frac{ 40}{ 1} \pm \frac{ 45}{ 1} \pm \frac{ 50}{ 1} \pm \frac{ 54}{ 1} \pm \frac{ 60}{ 1} \pm \frac{ 72}{ 1} \pm \frac{ 75}{ 1} \pm \frac{ 90}{ 1} \pm \frac{ 100}{ 1} \pm \frac{ 108}{ 1} \pm \frac{ 120}{ 1} \pm \frac{ 135}{ 1} \pm \frac{ 150}{ 1} \pm \frac{ 180}{ 1} \pm \frac{ 200}{ 1} \pm \frac{ 216}{ 1} \pm \frac{ 225}{ 1} \pm \frac{ 270}{ 1} \pm \frac{ 300}{ 1} \pm \frac{ 360}{ 1} \pm \frac{ 450}{ 1} \pm \frac{ 540}{ 1} \pm \frac{ 600}{ 1} \pm \frac{ 675}{ 1} \pm \frac{ 900}{ 1} \pm \frac{ 1080}{ 1} \pm \frac{ 1350}{ 1} \pm \frac{ 1800}{ 1} \pm \frac{ 2700}{ 1} \pm \frac{ 5400}{ 1} ~~ \pm \frac{ 1}{ 2} \pm \frac{ 2}{ 2} \pm \frac{ 3}{ 2} \pm \frac{ 4}{ 2} \pm \frac{ 5}{ 2} \pm \frac{ 6}{ 2} \pm \frac{ 8}{ 2} \pm \frac{ 9}{ 2} \pm \frac{ 10}{ 2} \pm \frac{ 12}{ 2} \pm \frac{ 15}{ 2} \pm \frac{ 18}{ 2} \pm \frac{ 20}{ 2} \pm \frac{ 24}{ 2} \pm \frac{ 25}{ 2} \pm \frac{ 27}{ 2} \pm \frac{ 30}{ 2} \pm \frac{ 36}{ 2} \pm \frac{ 40}{ 2} \pm \frac{ 45}{ 2} \pm \frac{ 50}{ 2} \pm \frac{ 54}{ 2} \pm \frac{ 60}{ 2} \pm \frac{ 72}{ 2} \pm \frac{ 75}{ 2} \pm \frac{ 90}{ 2} \pm \frac{ 100}{ 2} \pm \frac{ 108}{ 2} \pm \frac{ 120}{ 2} \pm \frac{ 135}{ 2} \pm \frac{ 150}{ 2} \pm \frac{ 180}{ 2} \pm \frac{ 200}{ 2} \pm \frac{ 216}{ 2} \pm \frac{ 225}{ 2} \pm \frac{ 270}{ 2} \pm \frac{ 300}{ 2} \pm \frac{ 360}{ 2} \pm \frac{ 450}{ 2} \pm \frac{ 540}{ 2} \pm \frac{ 600}{ 2} \pm \frac{ 675}{ 2} \pm \frac{ 900}{ 2} \pm \frac{ 1080}{ 2} \pm \frac{ 1350}{ 2} \pm \frac{ 1800}{ 2} \pm \frac{ 2700}{ 2} \pm \frac{ 5400}{ 2} ~~ \pm \frac{ 1}{ 7} \pm \frac{ 2}{ 7} \pm \frac{ 3}{ 7} \pm \frac{ 4}{ 7} \pm \frac{ 5}{ 7} \pm \frac{ 6}{ 7} \pm \frac{ 8}{ 7} \pm \frac{ 9}{ 7} \pm \frac{ 10}{ 7} \pm \frac{ 12}{ 7} \pm \frac{ 15}{ 7} \pm \frac{ 18}{ 7} \pm \frac{ 20}{ 7} \pm \frac{ 24}{ 7} \pm \frac{ 25}{ 7} \pm \frac{ 27}{ 7} \pm \frac{ 30}{ 7} \pm \frac{ 36}{ 7} \pm \frac{ 40}{ 7} \pm \frac{ 45}{ 7} \pm \frac{ 50}{ 7} \pm \frac{ 54}{ 7} \pm \frac{ 60}{ 7} \pm \frac{ 72}{ 7} \pm \frac{ 75}{ 7} \pm \frac{ 90}{ 7} \pm \frac{ 100}{ 7} \pm \frac{ 108}{ 7} \pm \frac{ 120}{ 7} \pm \frac{ 135}{ 7} \pm \frac{ 150}{ 7} \pm \frac{ 180}{ 7} \pm \frac{ 200}{ 7} \pm \frac{ 216}{ 7} \pm \frac{ 225}{ 7} \pm \frac{ 270}{ 7} \pm \frac{ 300}{ 7} \pm \frac{ 360}{ 7} \pm \frac{ 450}{ 7} \pm \frac{ 540}{ 7} \pm \frac{ 600}{ 7} \pm \frac{ 675}{ 7} \pm \frac{ 900}{ 7} \pm \frac{ 1080}{ 7} \pm \frac{ 1350}{ 7} \pm \frac{ 1800}{ 7} \pm \frac{ 2700}{ 7} \pm \frac{ 5400}{ 7} ~~ \pm \frac{ 1}{ 14} \pm \frac{ 2}{ 14} \pm \frac{ 3}{ 14} \pm \frac{ 4}{ 14} \pm \frac{ 5}{ 14} \pm \frac{ 6}{ 14} \pm \frac{ 8}{ 14} \pm \frac{ 9}{ 14} \pm \frac{ 10}{ 14} \pm \frac{ 12}{ 14} \pm \frac{ 15}{ 14} \pm \frac{ 18}{ 14} \pm \frac{ 20}{ 14} \pm \frac{ 24}{ 14} \pm \frac{ 25}{ 14} \pm \frac{ 27}{ 14} \pm \frac{ 30}{ 14} \pm \frac{ 36}{ 14} \pm \frac{ 40}{ 14} \pm \frac{ 45}{ 14} \pm \frac{ 50}{ 14} \pm \frac{ 54}{ 14} \pm \frac{ 60}{ 14} \pm \frac{ 72}{ 14} \pm \frac{ 75}{ 14} \pm \frac{ 90}{ 14} \pm \frac{ 100}{ 14} \pm \frac{ 108}{ 14} \pm \frac{ 120}{ 14} \pm \frac{ 135}{ 14} \pm \frac{ 150}{ 14} \pm \frac{ 180}{ 14} \pm \frac{ 200}{ 14} \pm \frac{ 216}{ 14} \pm \frac{ 225}{ 14} \pm \frac{ 270}{ 14} \pm \frac{ 300}{ 14} \pm \frac{ 360}{ 14} \pm \frac{ 450}{ 14} \pm \frac{ 540}{ 14} \pm \frac{ 600}{ 14} \pm \frac{ 675}{ 14} \pm \frac{ 900}{ 14} \pm \frac{ 1080}{ 14} \pm \frac{ 1350}{ 14} \pm \frac{ 1800}{ 14} \pm \frac{ 2700}{ 14} \pm \frac{ 5400}{ 14} ~~ \end{aligned} $$Substitute the possible roots one by one into the polynomial to find the actual roots. Start first with the whole numbers.
We can see that $ p\left( -5 \right) = 0 $ so $ x = -5 $ is a root of a polynomial $ p(x) $.
To find remaining zeros we use Factor Theorem. This theorem states that if $ \dfrac{p}{q} $ is root of the polynomial then the polynomial can be divided by $ \color{blue}{qx − p} $. In this example we divide polynomial $ p $ by $ \color{blue}{ x+5 }$
$$ \frac{ 14x^5+54x^4-375x^3-1268x^2+2115x+5400}{ x+5} = 14x^4-16x^3-295x^2+207x+1080 $$Step 3:
The next rational root is $ x = -5 $
$$ \frac{ 14x^5+54x^4-375x^3-1268x^2+2115x+5400}{ x+5} = 14x^4-16x^3-295x^2+207x+1080 $$Step 4:
Polynomial $ 14x^4-16x^3-295x^2+207x+1080 $ has no rational roots that can be found using Rational Root Test, so the roots were found using quartic formulas.