The roots of polynomial $ p(x) $ are:
$$ \begin{aligned}x_1 &= \frac{ 800 }{ 961 }+\frac{ 60 \sqrt{ 890}}{ 961 }i\\[1 em]x_2 &= \frac{ 800 }{ 961 }-60 \frac{\sqrt{ 890 }}{ 961 }i \end{aligned} $$Step 1:
Get rid of fractions by multipling equation by $ \color{blue}{ 200 } $.
$$ \begin{aligned} -\frac{961}{200}x^2+8x-20 & = 0 ~~~ / \cdot \color{blue}{ 200 } \\[1 em] -961x^2+1600x-4000 & = 0 \end{aligned} $$Step 2:
The solutions of $ -961x^2+1600x-4000 = 0 $ are: $ x = \dfrac{ 800 }{ 961 }+\dfrac{ 60 \sqrt{ 890}}{ 961 }i ~ \text{and} ~ x = \dfrac{ 800 }{ 961 }-\dfrac{ 60 \sqrt{ 890}}{ 961 }i$.
You can use step-by-step quadratic equation solver to see a detailed explanation on how to solve this quadratic equation.