The roots of polynomial $ p(x) $ are:
$$ \begin{aligned}x_1 &= 0\\[1 em]x_2 &= \frac{ 1 }{ 2 }+\frac{\sqrt{ 3 }}{ 2 }i\\[1 em]x_3 &= \frac{ 1 }{ 2 }- \frac{\sqrt{ 3 }}{ 2 }i \end{aligned} $$Step 1:
Factor out $ \color{blue}{ -4x^2 }$ from $ -4x^4+4x^3-4x^2 $ and solve two separate equations:
$$ \begin{aligned} -4x^4+4x^3-4x^2 & = 0\\[1 em] \color{blue}{ -4x^2 }\cdot ( x^2-x+1 ) & = 0 \\[1 em] \color{blue}{ -4x^2 = 0} ~~ \text{or} ~~ x^2-x+1 & = 0 \end{aligned} $$One solution is $ \color{blue}{ x = 0 } $. Use second equation to find the remaining roots.
Step 2:
The solutions of $ x^2-x+1 = 0 $ are: $ x = \dfrac{ 1 }{ 2 }+\dfrac{\sqrt{ 3 }}{ 2 }i ~ \text{and} ~ x = \dfrac{ 1 }{ 2 }-\dfrac{\sqrt{ 3 }}{ 2 }i$.
You can use step-by-step quadratic equation solver to see a detailed explanation on how to solve this quadratic equation.